
Frank Morlang

Institute of Flight Guidance

ATHLA – A TOOL COMMAND
LANGUAGE BINDING FOR THE
HIGH-LEVEL ARCHITECTURE

ATHLA – A Tool command language binding for the High-Level
Architecture

2

Overview

•Introduction

•Motivation

•Approach

•Use Case

•Outlook

ATHLA – A Tool command language binding for the High-Level
Architecture

3

Introduction

•HLA (High Level Architecture)
• IEEE standard for distributed simulation

• Purpose → Interoperability and Reuse

• Started in the 1990s → U.S. DoD

• Within NATO → STANAG 4603

• Actual version: HLA 1516-2010

ATHLA – A Tool command language binding for the High-Level
Architecture

4

Introduction

• HLA (High Level Architecture)
• Architecture

• Run-time Infrastructure (RTI)

• Federates

• Federation Object Model (FOM)

ATHLA – A Tool command language binding for the High-Level
Architecture

5

Introduction

•HLA (High Level Architecture)
• IEEE Std 1516-2010 Framework and Rules

• 10 architectural rules

• IEEE Std 1516.1-2010 Federate Interface Specification

• specifies the services (provided C++, Java APIs and Web

Services)

• IEEE Std 1516.2-2010 Object Model Template Specification

• Format of the FOM

ATHLA – A Tool command language binding for the High-Level
Architecture

6

Motivation

•Succesful Tcl realizations in the past
• Interfacer to X-Plane flight simulator

• Apache Kafka consumer and producer

• RabbitMQ sender and receiver

• ActiveMQ sender and receiver

• Different simulation components

ATHLA – A Tool command language binding for the High-Level
Architecture

7

Approach

HLA binding to Tcl built on top

of a commercial Java API by

usage of the JBlend package.

ATHLA – A Tool command language binding for the High-Level
Architecture

8

Approach

ATHLA – A Tool command language binding for the High-Level
Architecture

9

Approach

Important libraries to use in TclHLA_pitch:

• Provided libraries of the commercial RTI (Pitch)

• tclJBlend.jar of the JBlend Tcl package

ATHLA – A Tool command language binding for the High-Level
Architecture

10

Approach

The „root“:

• in TclFederate.java

public class TclFederate extends NullFederateAmbassador {

private RTIambassador _rtiAmbassador;

private Interp tclInterp;

private EncoderFactory _encoderFactory;

…

..

.

}

ATHLA – A Tool command language binding for the High-Level
Architecture

11

Approach

The „root“:

• in package hlaTcl.tcl

oo::class create ::hlaTcl::Hla {

variable Federate

constructor {x y} {

variable JarLocation [file dirname [file normalize [info script]]]

package require Jblend

append JarLocation /pitch

set ::env(TCL_CLASSPATH) $JarLocation

java::import tclhla.TclFederate

}

}

ATHLA – A Tool command language binding for the High-Level
Architecture

12

Approach

Initialization:

• in TclFederate.java

public void ini(String rtihost, String federationname, Interp interp) {

tclInterp = interp;

String settingsDesignator;

settingsDesignator = "crcAddress=" + rtihost;

_rtiAmbassador.createFederationExecution(federationname, urlArray,

"HLAfloat64Time");

…

..

.

}

ATHLA – A Tool command language binding for the High-Level
Architecture

13

Approach

Initialization:

• in package hlaTcl.tcl

method createFederationExecution {targetaddress federationname} {

set Federate [java::new TclFederate]

$Federate ini $targetaddress $federationname [java::getinterp]

…

..

.

}

ATHLA – A Tool command language binding for the High-Level
Architecture

14

Approach

Function example:

• in TclFederate.java

public void enable_TimeConstrained() {

try {

_rtiAmbassador.enableTimeConstrained();

} catch (InTimeAdvancingState | RequestForTimeConstrainedPending |

TimeConstrainedAlreadyEnabled | SaveInProgress |

RestoreInProgress | FederateNotExecutionMember |

NotConnected | RTIinternalError ex) {

Logger.getLogger(TclFederate.class.getName()).log(Level.SEVERE,

null, ex);

}

}

ATHLA – A Tool command language binding for the High-Level
Architecture

15

Approach

Initialization:

• in package hlaTcl.tcl

method enableTimeConstrained {} {

$Federate enable_TimeConstrained

}

ATHLA – A Tool command language binding for the High-Level
Architecture

16

Approach

Callback example:

• in TclFederate.java
@Override

public final void objectInstanceNameReservationSucceeded(String

objectName) {

synchronized (_reservationSemaphore) {

_reservationComplete = true;

_reservationSucceeded = true;

_reservationSemaphore.notifyAll();

successfullyReservedObject = objectName;

Notifier n = tclInterp.getNotifier();

TclEvent t = new EvalObjectInstanceNameReservationSucceededEvent();

n.queueEvent(t,TCL.QUEUE_TAIL);

t.sync();

}

}

ATHLA – A Tool command language binding for the High-Level
Architecture

17

Approach

Callback example:

• in TclFederate.java

class EvalObjectInstanceNameReservationSucceededEvent extends TclEvent {

@Override

public int processEvent (int flags) {

try {

tclInterp.eval(tclObjectInstanceNameReservationSucceededScript);

}

catch (TclException x) {}

return 1;

}

}

ATHLA – A Tool command language binding for the High-Level
Architecture

18

Approach

Callback example:

• in TclFederate.java

public void set_objectInstanceNameReservationSucceededScript(String

objectinstancenamereservationsucceededscript) {

tclObjectInstanceNameReservationSucceededScript =

objectinstancenamereservationsucceededscript;

}

ATHLA – A Tool command language binding for the High-Level
Architecture

19

Approach

Callback example:

• in package hlaTcl.tcl

method setobjectInstanceNameReservationSucceededScript {thescript} {

$Federate set_objectInstanceNameReservationSucceededScript \

$thescript

}

ATHLA – A Tool command language binding for the High-Level
Architecture

20

Approach

Callback example:

• in tcl file using package hlaTcl.tcl

proc objectInstanceNameReservationSucceededCallbackReceive {} {

global reservationComplete

set reservationComplete 1

puts "CALLBACK: Object instance name reservation succeeded!“

return

}

$obj setobjectInstanceNameReservationSucceededScript \

objectInstanceNameReservationSucceededCallbackReceive

ATHLA – A Tool command language binding for the High-Level
Architecture

21

Use Case

ATHLA – A Tool command language binding for the High-Level
Architecture

22

Outlook

