
  

ReacTcl - a lightweight framework 
for reactive programming in Tcl

Colin Macleod

colin_g_macleod@yahoo.com

CGM on Tcl wiki and chat

mailto:colin_g_macleod@yahoo.com


  

Introduction
Reactive Programming is a technique where the programmer 
specifies a set of invariant relationships between the inputs 
and outputs of a system.  

The system then reacts to changes in the inputs by 
automatically updating the outputs to maintain these 
relationships.  Automatic tracking of the interdependencies 
of these computations allows them to be scheduled 
when required but not otherwise.  

This can be viewed as a generalisation of the operation of 
spreadsheets to support more free-form and complex 
computations.



  

Motivation
I started looking into this when I was working on financial 
trading screens where each user input could trigger many 
complicated updates to other elements on the same screen.  I 
found that the existing procedural code to handle such updates 
was tricky, difficult to maintain, and sometimes inefficient.  

In particular, adding new inputs which affect the existing 
calculations could cause the procedural code needed to perform 
the necessary updates to multiply in complexity.  I have seen 
bugs introduced to production code by this process.  Of course, 
one can be safe by simply recomputing everything on every update, 
but this may be unacceptable when some operations are slow, e.g. 
database accesses or calls to remote services.



  

Example: inputs a,b,c; 
intermediates m,n,o; outputs x,y

Dependencies:
● m=M(a,b)  n=N(b,c)  o=O(c)  x=X(m,o) y=Y(n,o)

Update Code:
● If a changes, recompute m,x
● If b changes, recompute m,n,x,y
● If c changes, recompute n,o,x,y



  

Motivation continued
In contrast, expressing the necessary computations 
declaratively was cleaner, safer, and sometimes even more 
efficient.  I believe this technique can be useful in a 
wide range of interactive applications.

That code was in C++, and was owned by my then-employer.  
It required templates to work multiple types of data, and 
an awkward system for tracking dependencies to make it 
thread-safe.  Fortunately neither of these is needed in 
Tcl, since Everything Is A String, and we never have 
multiple threads executing in one interpreter.



  

Implementation
ReacTcl uses TclOO objects to represent reactive values. 

A Reactive object represents a variable which can either be 
set to a specific value or computed from other Reactive 
objects.  Such computed values are memoized and their 
dependencies on other Reactive values are automatically 
tracked so that these computations are re-run only 
when changes to their inputs have invalidated the currently 
memoized output value.



  

Usage
● Create a Reactive object:  react myVar
● Call the object with no arguments to get its value, or an 

error if that has not been defined:  myVar
● Give a variable a fixed value:  react myStr == {a b c}
● Give it an expr-computed value:  react myNum = {3 * 2}
● Give it a chunk of code to evaluate:  

  react myResult <- {string repeat [myStr] [myNum]}



  

Live Demonstration
see Appendix for log of demo

The ReacTcl code is on the Wiki at:

https://wiki.tcl-lang.org/page/ReacTcl



  

To Be Done
● Create a non-trivial example of when this 

approach can pay off.
● Mechanism to link input and output Reactive 

variables to the -textvariable of Tk widgets.
● Extension to arrays or dicts of values, 

memoizing individual elements.



  

Appendix: Log of Live Demonstration
(reactcl) 52 % source reactcl.tcl
(reactcl) 53 % 
(reactcl) 53 % react s
::s
(reactcl) 54 % s
::s is unset.
(reactcl) 55 % s == abcd
0
(reactcl) 56 % s
abcd
(reactcl) 57 % react n = {2 * 3}
::n
(reactcl) 58 % n
6
(reactcl) 59 % react r <- {string repeat [s] [n]}
::r
(reactcl) 60 % r
abcdabcdabcdabcdabcdabcd
(reactcl) 61 % 
(reactcl) 61 % n = 5
(reactcl) 62 % r
abcdabcdabcdabcdabcd
(reactcl) 63 % 
(reactcl) 63 % n <- {puts {Calc n}; expr { 1 + [m]}}  #Note
(reactcl) 64 % 
(reactcl) 64 % r
Calc n
invalid command name "m"
(reactcl) 65 % r
invalid command name "m"
(reactcl) 66 % 

(reactcl) 66 % react m = 3
::m
(reactcl) 67 % r
invalid command name "m"
(reactcl) 68 % react m
can't create object "m": command already exists with that name
(reactcl) 69 % n <- {puts {Calc n}; expr { 1 + [m]}}
(reactcl) 70 % r
Calc n
abcdabcdabcdabcd
(reactcl) 71 % 
(reactcl) 71 % r
abcdabcdabcdabcd
(reactcl) 72 % m
3
(reactcl) 73 % m = 2
(reactcl) 74 % r
Calc n
abcdabcdabcd
(reactcl) 75 % r
abcdabcdabcd
(reactcl) 76 % s == xyzz
0
(reactcl) 77 % r
xyzzxyzzxyzz
(reactcl) 78 % 

#Note:  “puts {Calc n}” here lets us see when this calculation is re-run 
or when the previously memoized result is just reused.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

