

DisTcl - Distributed Programming
Infrastructure for Tcl

Colin Macleod

colin_g_macleod@yahoo.com

CGM on Tcl wiki and chat

mailto:colin_g_macleod@yahoo.com

Introduction – Distributed Processing

There are many computing tasks which require multiple
machines or at least multiple processes to execute.

Unless these tasks are entirely independent we then need
some means to communicate data and coordinate processing
between multiple machines and processes.

There are of course many frameworks in existence to manage
this, but they are often complex and difficult to use.

Distributed Processing - issues
● Each separate process and machine needs to be able to find

the others which it needs to read data from or send data to.
● We want the processing load to be spread evenly across the

available machines and processes.
● It is highly desirable to be able to bring up or shut down

additional processes/machines to respond to changing demand
or maintenance needs .

● When the same results may be needed more than once we
would like to cache them for reuse by any other process or
machine.

Distributed Processing – issues 2

Existing frameworks I have worked with require complex and
error-prone configuration to achieve these objectives.

DisTcl aims to achieve the same ends in a simpler and more
flexible way. It does this by using the Redis database system
for inter-process communication and caching.

Demonstration – Mandelbrot Set

Laptop

mand.tcl

(Vienna)

Redis

(AWS in IE)

Linux (London)
mand_server

Win (London)
mand_server

Linux (London)
mand_server

Win (London)
mand_server

Mandelbrot Server
proc slice {Cheight Rmin Rscale Imax Iscale start stop col_ver} {

…..

proc do_mand {what args} {

 switch $what {

 slice {return -secs2keep 300 [slice {*}$args]}

 square {return -secs2keep 600 [expr {[lindex $args 0] ** 2}]}

 hello {return "Hello from [pid] on [info hostname] running $::tcl_platform(os)"}

 default {error "Don't know how to '$what'"}

 }

}

distcl::serve redis mand do_mand

Minimal Test Client

mand_client.tcl :

#!/usr/local/bin/tcl

source distcl.tcl

source redis-cloud.tcl

puts [distcl::get redis mand {*}$argv]

Redis - introduction

Redis is a well-known in-memory database system often used
for caching. Its name means REmote DIctionary Server. A Redis
server provides various forms of data structure which can be
accessed by network connections from other processes and
machines.

Redis was created by Salvatore Sanfilippo (a.k.a. Antirez) who
started by writing a prototype in Tcl to check the feasibility of his
design and then reimplemented it in C. One can still see Tcl
influences in Redis, e.g. there is a command LINSERT which
operates on lists in a very similar way to [linsert] in Tcl.

Redis - licensing

Recently there has been some controversy because the
company which now controls Redis changed the license of the
code to one which is not generally regarded as Open Source.

In response to this several forks and compatible alternatives
have appeared. DisTcl should be able to work with any of
these, though I have not yet tested this.

Redis - structure

Redis can be considered as a "noSql" database. There is no
schema to impose a structure on the data. Instead one simply
creates and uses data items as required on-the-fly.

There are forms of data which correspond to simple variables,
lists and arrays in Tcl and some more advanced forms also. To
interface Redis with Tcl I am using a package called Retcl
written by Pietro Cerutti.

DisTcl - Design

● DisTcl organises computing facilities into named services.

● A service responds to some set of messages to perform certain
tasks and return corresponding data.

● A service can be implemented by one or more server
processes, and used by one or more client processes.

● A process which is a server for one service could also be a
client for another service.

DisTcl – Design 2

● DisTcl clients and servers connect to a Redis instance which
then relays requests and responses between them, and also
caches results which are stable enough for this to be
appropriate.

● This communication uses Redis lists as pipelines of data, with
different clients and servers writing to a pipe and reading from
it. Redis also provides more sophisticated forms of queue, but
simple list-based queues suit DisTcl's needs.

DisTcl – Design 3

● A client for service ABC will write requests to a corresponding
Redis queue.

● A server for ABC will pull requests from that queue, process
them and write results back to another queue which the client
will read from.

● If the result is one which can be cached, the server will also
store it in Redis so that future requests for this item can be
served directly from the cache.

DisTcl – Redis structures

Redis

……...

Service Request Queue

Request1 response queue

Request2 response queue

Request1 cached response

Request0 cached response

Client

Client

Server

Server

Server

DisTcl – Design 4

● So participating processes only need to know how to connect to
the Redis instance, they don't need to know the locations of
other processes.

● The Redis list operations ensure that each request will only be
read by one server, the next which becomes available.

● Additional servers can be started or stopped as required and we
get a simple form of load-balancing across them, with no other
configuration needed.

DisTcl – Design 5
Usually when a client makes a request it then waits for the
response before proceeding. However sometimes the client
knows that it will need multiple requests, which could be
processed in parallel if there are free servers available.

To take advantage of this parallelism the client can make
"prefetch" requests for all these items, without waiting for the
results. If there are servers free, they will start processing these
requests and storing the results in the Redis cache. Then when
the client actually requests each item, some or all of them will
already be in the cache and can be returned immediately.

DisTcl – use in Newsgrouper
● Newsgrouper is a web site I'm working on which provides

access to Usenet newsgroups without the user needing an
NNTP client. I use DisTcl as part of the infrastructure behind
this.

● There is a single service called "ng" which provides commands
to get the list of articles for a group, to get the text of a specific
article etc.. The server for this is a script which uses the nntp
package from Tcllib to pull data from a Usenet server. Since the
server permits up to four concurrent connections I can run 4
instances of this script in parallel.

● The client for the "ng" service is a tclhttpd web server, which
can serve requests concurrently in multiple threads, so each
thread acts as a separate client.

DisTcl – General Points
● Other languages - There is nothing Tcl-specific in how DisTcl works.

Clients and servers using the same protocol could easily be
implemented in other languages, though they might need a little more
code to serialise/deserialise data, which Tcl does automatically.

● Redis tools - Using Redis means that various existing tools can be
applied. E.g. redis-cli lets you run commands interactively to examine
or modify data, and its MONITOR command lets you see all updates
as they happen.

● Other data - Of course once you have Redis, it may be convenient to
use it to store other data. Newsgrouper also uses Redis to store
user-specific data like which articles a user has read, outside of the
DisTcl system.

DisTcl - Scalability

● For busy applications the Redis server could become a
bottleneck, limiting throughput.

● Redis supports Clustering of servers to allow an instance to
scale beyond the limits of a single machine. I have not yet
examined in detail whether DisTcl could work on a Redis
cluster.

● However if multiple services are being used, an easy way to
scale up would be to allocate different services to separate
Redis instances.

DisTcl – Future Directions
● There are many ways in which the existing DisTcl code could be

improved and optimised.
● Redis supports running scripts in the Lua language inside the

server. So one improvement would be to convert sequences of
Redis operations into Lua scripts. This would reduce network
traffic and also ensure that such sequences of operations are
executed atomically.

● Last year I presented a simple system for reactive computing in
Tcl, called ReacTcl. This provides on-demand computing and
memoisation of results within a single process. DisTcl has
some similarities but operates between processes and
machines. It might be useful to combine ReacTcl and DisTcl
into a unified system, but I have not done any serious work on
this yet.

DisTcl – Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

