
NaviServer 5.0

OpenACS and EuroTcl 2024

Univ.-Prof. Dr. Gustaf Neumann
Vienna University of Economics and Business
Information Systems and New Media

JULY 8, 2024

§ What’s new?
§ Part 1 of NaviServer 5 was presented here last year

https://openacs.org/conf2023/info/download/file/openacs-conf-2023-naviserver.pdf

§ NaviServer 5 release Tcl 9 compatible
§ … depends on Tcl 9 release
§ … was infected with the Tcl 9 disease
§ Changes since last year:

324 files changed, 16365 insertions(+), 7648 deletions(-)

§ Most important developments since last year
§ Container support
§ Tracking memory growth
§ Handling large files
§ Unix Domain Sockets
§ NaviServer and Reverse Proxy Servers

§ Next Steps

PAGE 2

Overview

https://openacs.org/conf2023/info/download/file/openacs-conf-2023-naviserver.pdf

§ Goals:
§ Ease deployment
§ Ease testing with multiple versions of

NaviServer/Tcl/…
§ Based on Alpine and Debian
§ Binaries for linux/amd64 and linux/arm64
§ Preconfigured with most common NaviServer modules

§ Containers:
§ Base NaviServer
§ NaviServer with PostgreSQL client support
§ NaviServer with Oracle client support
§ OpenACS based on NaviServer with PostgreSQL client support

PAGE 3

NaviServer in a Container

NaviServer Container Structure

PAGE 4

Base Image

Repositories at hub.docker.com

PAGE 5

3 dockerhub repositories for NaviServer

Repository: gustafn/naviserver

PAGE 6

Per repository 9 variants (tags):
- latest, latest-bookworm, latest-alpine
- last releases: 4.99.30 + variants, 4.99.29 + variants

Image analysis
by Docker Scout

Repository: gustafn/naviserver
(a few days ago)

PAGE 7

Per Tag: images for amd64 and arm64

PAGE 8

Small footprint (compressed)
• Bookworm slim: 70 MB (pg 90 MB, ora 150MB)
• Alpine: 14 MB (pg: 15MB)

Number of images
• REPOS * tags * images = 3 * 9 * 2 = 54

Why not always Alpine?
• Based on “musl”
• Currently no “tcmalloc”
• “lc_collate” limited
• Oracle client binary libraries don’t work (arm64)

gustafn/naviserver latest-alpine d654f2becdb1 14 minutes ago 53MB

Many Configuration Options
(What should be in the container?)

PAGE 9

Options (sample)
• Container contains only binaries
• Container contains binaries and script files
• Keep log-files and script files in container, …
• Access DB on host
• Run DB and NaviServer in container

Tool of choice
• Docker compose
• All these variants can be defined

in a single file
• Avoid producing multiple config files
• Configurations are “stacks”

Recommendation: Use docker compose
and Portainer

PAGE 10

Override defaults
for configuration variables
via environment variables

Setting environment
variables via GUI

(here: use tcmalloc)

Docker compose file
(online editing)

Networking Challenges with
Containers (1/2)

PAGE 11

Server-side Ephemeral Ports
• “short living” ports
• Usually used for client side
• Container context: used for servers to ease start of multiple servers of the same kind

• running on docker host multiple nsd
• every container has a different external listening port)

• Of course, server port does not have to be ephemeral

Mapping of
• port from docker host to
• listening port in container

Networking Challenges
with Containers (2/2)

PAGE 12

Challenges inside the container
• Validation of host header fields
• Addressing DB e.g. on docker host or

in a different container
• Telling other servers in, e.g., an OpenACS cluster your “external” address

(defined in docker-compose file, ephemeral ports)
• Some HTTP requests should run solely inside the container (e.g. regression test)
• … lead to changes in OpenACS

Managing of multiple
IP addresses and ports

Understanding Memory Growth (1/3)

PAGE 13

Many potential reasons
• Configuration specific (increasing limits dynamically)
• Cache growth
• Application leaks (namespaced variables are not cleaned up after request)
• C-level leaks from NaviServer and/or modules (using valgrind)
• Tcl (doubling policy for space in Tcl_Obj, Tcl_DString, …, might survive long)
• OS + C-library (esp. malloc implementation)
• Memory fragmentation

Background multipart/form-data

PAGE 14

HTML Form

<FORM action="/cgi/handle"
enctype="multipart/form-data"
method="POST">

What is your name? <INPUT type=”text" name="submitter">
What files are you sending? <INPUT type =”file" name ="pics">

<FORM>

POST /upload HTTP/1.1
Content-Length: 14128
Content-type: multipart/form-data, boundary=AaB03x

--AaB03x
content-disposition: form-data; name=”submitter"

Susie Derkins
--AaB03x
content-disposition: form-data; name="pics"; filename="file1.txt"
Content-Type: text/plain

... contents of file1.txt ...
--AaB03x--

HTTP Request Request data provided by NaviServer
in memory (when small) or
via spool file (when large)

Understanding Memory Growth (2/3)

PAGE 15

Snippet from parsing a file containing multipart/formdata in Tcl

POST /upload HTTP/1.1
Content-Length: 14128
Content-type: multipart/form-data, boundary=AaB03x

--AaB03x
content-disposition: form-data; name=”submitter"

Susie Derkins
--AaB03x
content-disposition: form-data; name="pics"; filename="file1.txt"
Content-Type: text/plain

... contents of file1.txt ...
--AaB03x--

This snippet can cause
memory bloat and/or crash!

Can you spot it?

Abbreviated sample
request data

spooled to a file

Understanding Memory Growth (2/3)

PAGE 16

Tcl “gets” potentially harmful
• Result of gets is a Tcl_Obj
• Can cause a memory bloat/crash, when newlines are more than 2 GB apart
• Code was unchanged at least for 17 years
• Was found when testing known issues with Tcl 9.
• With Tcl 9 the crash disappeared, but the memory bloat stays
• New solution in NaviServer 5: ns_fseekchars

Snippet “worked” for 17 years

Parsing large file uploads
(multipart/formdata) in Tcl using
ns_fseekchars

PAGE 17

Benefits:
• No memory bloat
• Lifts 4 GB limit for Tcl 8.6 as well
• Significantly faster

microseconds

Understanding Memory Growth (3/3)

PAGE 18

Newly integrated statistics from TCmalloc
• Part of “nsstats”
• Requires compilation with –DSYSTEM_MALLOC for Tcl and NaviServer (or flag in install-ns)
• Requires setting LD_PRELOAD (see above)
• Comparison of malloc implementations

https://next-scripting.org/2.4.0/doc/misc/thread-mallocs

727 MB are kept for reuse,
But can be freed (via Web)

RSS: 2.7 GB

Application usage: 1.1 GB

https://next-scripting.org/2.4.0/doc/misc/thread-mallocs/index1

§ Motivation
§ Reduce networking complexity (e.g. with containers)
§ Uses Unix permission system (access control, easier than firewall)
§ Probably better performance (low latency, high throughput)
§ Resource efficiency (no networking stack involved)
§ User request (Georg asked)

§ Unix Domain Socket Support in NaviServer 5:
§ Incoming requests (server side)
§ Outgoing requests (client side)
§ ns_http

§ ns_connchan

PAGE 19

Unix Domain Sockets

§ How
§ Implemented via the nssock module (general socket implementation)

§ Parameter address must start with a ”/”, no port needed

§ Unix Domain Socket is created upon server start

#
Example driver configuration for listening on a Unix Domain Socket
#
ns_section ns/modules {

ns_param unix nssock
}

ns_section ns/module/unix {
ns_param defaultserver default
ns_param address /tmp/uds.socket

}

PAGE 20

Unix Domain Sockets (Server Side)

§ How
§ Added flag -unix_socket SOCKETNAME to ns_http and ns_connchan

(similar cURL)

#
Example of using ns_connchan via domain socket
#
set chan [ns_connchan open -unix_socket /tmp/uds.socket http://foo.org/]
ns_connchan read $chan

#
Example of using ns_nttp via domain socket
#
set d [ns_http run -unix_socket /tmp/uds.socket http://foo.org/]

§ For reverse proxy implementation (revproxy module, Apache syntax):

unix:/home/www.socket|http://localhost/whatever/

PAGE 21

Unix Domain Sockets (Client Side)

§ Background
§ Implemented as NaviServer module
§ In use e.g. on openacs.org with virtual server

cvs.openacs.org to redirect requests to “fisheye” server
§ Can be used as filter or via ns_register_proc
§ One can say redirects certain requests based on path or file name pattern

to a different server

§ New Features
§ Choice between ns_connchan and ns_http
§ Implementation based on ns_http can use persistent connections
§ Support of Unix Domain Sockets
§ One can now run OpenACS behind a NaviServer running as reverse proxy

PAGE 22

NaviServer as Reverse Proxy Server

§ Challenge
§ Determine trusted peer addresses (who made the request)

when running a reverse proxy
§ The raw peer address of the socket connection is always the proxy server
§ Peer IP addresses are needed in the log-files, access control, request queue management, trouble

shooting, geo-location, …
§ Use of reverse proxies is growing (cloud, AWS load balancer, …)

§ Standard Approach: x-forwarded-for, forward
§ Can be easily faked by a client adding its own content to x-forwarded-for
§ Complication: multi-tiered reverse proxies

§ New
§ Configurable right-to-left processing (similar to the optional “realip” modules for nginx),

define trusted forwarded-for server via CIDR specs, etc.
§ Implementation of new commands ns_ip public or ns_ip trusted

https://naviserver.sourceforge.io/5.0/naviserver/files/ns_ip.html

PAGE 23

NaviServer behind Reverse Proxy Server

https://naviserver.sourceforge.io/5.0/naviserver/files/ns_ip.html

§ NaviServer 5
§ Runs its regression test regularly with actual Tcl9 versions
§ Should be released when Tcl9 is finally released
§ Many new features (a few covered here)

§ Agenda

§ Provide tagging scheme for docker including Tcl9

§ OpenACS 5.10.1 release

§ Then porting 5.10.1 to Tcl9 (release packages larger than tcllib)

Language files blank comment code
--
…
Tcl/Tk 2315 66944 65858 320853
SQL 1846 48461 46288 215038
…

§ Tcl9 migration tool (based on nagelfar) does not work for OpenACS
(adp_proc, argument checking, …)

§ Porting NaviServer documentation?

§ Questions?

PAGE 24

Summary

Institute for Information Systems and
New Media
Welthandelsplatz 1, 1020 Vienna, Austria

UNIV.PROF. DR. Gustaf Neumann

T +43-1-313 36-4671
Gustaf.neumann@wu.ac.at
www.wu.ac.at

PAGE 25

