
Neofytos Dimitriou - July, 2024

Trekking through dependencies
Introducing ttrek

Loading…

Demo

For the fun of it but…

Why?

In the past

• Bash Scripts

• Designed to install specific versions of packages

• Build Tools

• Designed with one-time execution approach

• OS Package Managers

• apt-get reports Tcl 8.6.11 on my desktop at the moment (June 2024)

• Global installation

• Other

• vcpkg, conan, xrepo

It employs a SAT solver for dependency resolution

ttrek
Has its own JSON specification file

It creates a virtual environment directory tree

resolvo in ttrek 1/4
Dependency Resolution

• C++ bindings to resolvo are used under the hood

• SAT solver tailored for dependency resolution

• Can explain visually why dependencies are not satisfiable

resolvo in ttrek 2/4
Example: unsat after backtracking

resolvo in ttrek 3/4
Example: pubgrub article package graph

resolvo in ttrek 4/4
Example: pubgrub article unsat

ttrek.json
The Specification File

• Blueprint for dependencies

• Outlines packages and version
ranges

• Specifies additional build
instructions (work in progress)

Virtual Environment
Local Vs Global Vs User Mode

• Problem:

• Not possible for one installation to meet the requirements of every
application

• If application A needs version 1.0 of a particular module but application B
needs version 2.0, then the requirements are in conflict and installing version
1.0 or 2.0 will leave one application unable to run.

• Solution:

• Create a virtual environment: a self-contained directory tree that contains the
packages. In our case, ttrek-venv directory tree under the project directory.

ttrek
The Client

• ttrek init — creates ttrek-venv directory tree

• ttrek install — three strategies: latest or locked or favored (default)

• ttrek update — three strategies: latest (default) or locked or favored

• ttrek uninstall

• ttrek run — runs scripts in ttrek-venv/local/bin with proper env vars

• ttrek ls — list installed packages

• trrek search — search registry packages (still in progress)

ttrek.sh
The Registry Website

• Back to Bash Scripts :)

• Generated Install Scripts

• Browsing packages

• Distributing the ttrek client

The Result 1/3

The Result 2/3

The Result 3/3

- Adolfo Ochagavia (The magic of dependency resolution)

But the programmer is a magician, and his whole magic
is in this, that he does say “give me the dependency
tree for x, y, z”, and lo! It is the dependency tree for x, y,
z.

Many thanks to Konstantin Kushnir!

https://ttrek.sh

Coming Soon

https://github.com/jerily/ttrek

Dilemma 1
Source Vs Pre-built Binaries

• Pre-built binaries:

• Easier to distribute / More expensive to maintain

• Automatic generation possible?

• Auto-publish to OS package managers?

• Building from source code:

• More cost-effective

• Reverse Dependencies are easy to deal with when building from source code

• External dependencies (e.g. cmake) make it harder to use

Dilemma 2
Local Vs Remote Registry

• “sync” sub-command

• Related issues for discussion:

• Who maintains and controls the registries?

• How are contributors and packages authenticated?

• Will there be oversight for security reasons (malware, etc)?

