- I OpenACS For Everyone
- I.1 High level information: What is OpenACS?
- I.1.1 Overview
- I.1.2 OpenACS Release Notes
- I.2 OpenACS: robust web development framework
- I.2.1 Introduction
- I.2.2 Basic infrastructure
- I.2.3 Advanced infrastructure
- I.2.4 Domain level tools
- I.1 High level information: What is OpenACS?
- II Administrator's Guide
- II.2 Installation Overview
- II.2.1 Basic Steps
- II.2.2 Prerequisite Software
- II.3 Complete Installation
- II.3.1 Install a Unix-like system and supporting software
- II.3.2 Install Oracle 10g XE on debian
- II.3.2.1 Install Oracle 8.1.7
- II.3.3 Install PostgreSQL
- II.3.4 Install AOLserver 4
- II.3.5 Quick Install of OpenACS
- II.3.5.1 Complex Install OpenACS 5.3
- II.3.6 OpenACS Installation Guide for Windows2000
- II.3.7 OpenACS Installation Guide for Mac OS X
- II.4 Configuring a new OpenACS Site
- II.4.1 Installing OpenACS packages
- II.4.2 Mounting OpenACS packages
- II.4.3 Configuring an OpenACS package
- II.4.4 Setting Permissions on an OpenACS package
- II.4.5 How Do I?
- II.4.6 Configure OpenACS look and feel with templates
- II.5 Upgrading
- II.5.1 Overview
- II.5.2 Upgrading 4.5 or higher to 4.6.3
- II.5.3 Upgrading OpenACS 4.6.3 to 5.0
- II.5.4 Upgrading an OpenACS 5.0.0 or greater installation
- II.5.5 Upgrading the OpenACS files
- II.5.6 Upgrading Platform components
- II.6 Production Environments
- II.6.1 Starting and Stopping an OpenACS instance.
- II.6.2 AOLserver keepalive with inittab
- II.6.3 Running multiple services on one machine
- II.6.4 High Availability/High Performance Configurations
- II.6.5 Staged Deployment for Production Networks
- II.6.6 Installing SSL Support for an OpenACS service
- II.6.7 Set up Log Analysis Reports
- II.6.8 External uptime validation
- II.6.9 Diagnosing Performance Problems
- II.7 Database Management
- II.7.1 Running a PostgreSQL database on another server
- II.7.2 Deleting a tablespace
- II.7.3 Vacuum Postgres nightly
- II.8 Backup and Recovery
- II.8.1 Backup Strategy
- II.8.2 Manual backup and recovery
- II.8.3 Automated Backup
- II.8.4 Using CVS for backup-recovery
- II.A Install Red Hat 8/9
- II.B Install additional supporting software
- II.B.1 Unpack the OpenACS tarball
- II.B.2 Initialize CVS (OPTIONAL)
- II.B.3 Add PSGML commands to emacs init file (OPTIONAL)
- II.B.4 Install Daemontools (OPTIONAL)
- II.B.5 Install qmail (OPTIONAL)
- II.B.6 Install Analog web file analyzer
- II.B.7 Install nspam
- II.B.8 Install Full Text Search
- II.B.9 Install Full Text Search using Tsearch2
- II.B.10 Install Full Text Search using OpenFTS (deprecated see tsearch2)
- II.B.11 Install nsopenssl
- II.B.12 Install tclwebtest.
- II.B.13 Install PHP for use in AOLserver
- II.B.14 Install Squirrelmail for use as a webmail system for OpenACS
- II.B.15 Install PAM Radius for use as external authentication
- II.B.16 Install LDAP for use as external authentication
- II.B.17 Install AOLserver 3.3oacs1
- II.C Credits
- II.C.1 Where did this document come from?
- II.C.2 Linux Install Guides
- II.C.3 Security Information
- II.C.4 Resources
- II.2 Installation Overview
- III For OpenACS Package Developers
- III.9 Development Tutorial
- III.9.1 Creating an Application Package
- III.9.2 Setting Up Database Objects
- III.9.3 Creating Web Pages
- III.9.4 Debugging and Automated Testing
- III.10 Advanced Topics
- III.10.1 Write the Requirements and Design Specs
- III.10.2 Add the new package to CVS
- III.10.3 OpenACS Edit This Page Templates
- III.10.4 Adding Comments
- III.10.5 Admin Pages
- III.10.6 Categories
- III.10.7 Profile your code
- III.10.8 Prepare the package for distribution.
- III.10.9 Distributing upgrades of your package
- III.10.10 Notifications
- III.10.11 Hierarchical data
- III.10.12 Using .vuh files for pretty urls
- III.10.13 Laying out a page with CSS instead of tables
- III.10.14 Sending HTML email from your application
- III.10.15 Basic Caching
- III.10.16 Scheduled Procedures
- III.10.17 Enabling WYSIWYG
- III.10.18 Adding in parameters for your package
- III.10.19 Writing upgrade scripts
- III.10.20 Connect to a second database
- III.10.21 Future Topics
- III.11 Development Reference
- III.11.1 OpenACS Packages
- III.11.2 OpenACS Data Models and the Object System
- III.11.3 The Request Processor
- III.11.4 The OpenACS Database Access API
- III.11.5 Using Templates in OpenACS
- III.11.6 Groups, Context, Permissions
- III.11.7 Writing OpenACS Application Pages
- III.11.8 Parties in OpenACS
- III.11.9 OpenACS Permissions Tediously Explained
- III.11.10 Object Identity
- III.11.11 Programming with AOLserver
- III.11.12 Using Form Builder: building html forms dynamically
- III.12 Engineering Standards
- III.12.1 OpenACS Style Guide
- III.12.2 Release Version Numbering
- III.12.3 Constraint naming standard
- III.12.4 ACS File Naming and Formatting Standards
- III.12.5 PL/SQL Standards
- III.12.6 Variables
- III.12.7 Automated Testing
- III.13 CVS Guidelines
- III.13.1 Using CVS with OpenACS
- III.13.2 OpenACS CVS Concepts
- III.13.3 Contributing code back to OpenACS
- III.13.4 Additional Resources for CVS
- III.14 Documentation Standards
- III.14.1 OpenACS Documentation Guide
- III.14.2 Using PSGML mode in Emacs
- III.14.3 Using nXML mode in Emacs
- III.14.4 Detailed Design Documentation Template
- III.14.5 System/Application Requirements Template
- III.15 TCLWebtest
- III.16 Internationalization
- III.16.1 Internationalization and Localization Overview
- III.16.2 How Internationalization/Localization works in OpenACS
- III.16.4 Design Notes
- III.16.5 Translator's Guide
- III.D Using CVS with an OpenACS Site
- III.9 Development Tutorial
- IV For OpenACS Platform Developers
- IV.17 Kernel Documentation
- IV.17.1 Overview
- IV.17.2 Object Model Requirements
- IV.17.3 Object Model Design
- IV.17.4 Permissions Requirements
- IV.17.5 Permissions Design
- IV.17.6 Groups Requirements
- IV.17.7 Groups Design
- IV.17.8 Subsites Requirements
- IV.17.9 Subsites Design Document
- IV.17.10 Package Manager Requirements
- IV.17.11 Package Manager Design
- IV.17.12 Database Access API
- IV.17.13 OpenACS Internationalization Requirements
- IV.17.14 Security Requirements
- IV.17.15 Security Design
- IV.17.16 Security Notes
- IV.17.17 Request Processor Requirements
- IV.17.18 Request Processor Design
- IV.17.19 Documenting Tcl Files: Page Contracts and Libraries
- IV.17.20 Bootstrapping OpenACS
- IV.17.21 External Authentication Requirements
- IV.18 Releasing OpenACS
- IV.18.1 OpenACS Core and .LRN
- IV.18.2 How to Update the OpenACS.org repository
- IV.18.3 How to package and release an OpenACS Package
- IV.18.4 How to Update the translations
- IV.17 Kernel Documentation
- V Tcl for Web Nerds
- V.1 Tcl for Web Nerds Introduction
- V.2 Basic String Operations
- V.3 List Operations
- V.4 Pattern matching
- V.5 Array Operations
- V.6 Numbers
- V.7 Control Structure
- V.8 Scope, Upvar and Uplevel
- V.9 File Operations
- V.10 Eval
- V.11 Exec
- V.12 Tcl for Web Use
- V.13 OpenACS conventions for TCL
- V.14 Solutions
- VI SQL for Web Nerds
- VI.1 SQL Tutorial
- VI.1.1 SQL Tutorial
- VI.1.2 Answers
- VI.2 SQL for Web Nerds Introduction
- VI.3 Data modeling
- VI.3.1 The Discussion Forum -- philg's personal odyssey
- VI.3.2 Data Types (Oracle)
- VI.3.4 Tables
- VI.3.5 Constraints
- VI.4 Simple queries
- VI.5 More complex queries
- VI.6 Transactions
- VI.7 Triggers
- VI.8 Views
- VI.9 Style
- VI.10 Escaping to the procedural world
- VI.11 Trees
- VI.1 SQL Tutorial
III.11.10 Object Identity
One of the major design features of OpenACS 5.2.3rc1 is the explicit representation of object identity. The reason I say "explicit representation" is because the concept of object identity has been around forever. It is inherent to our problem domain. Consider the example of 3.x style scoping. The 3.x data models use the triple (user_id, group_id, scope) to identify an object. In the 5.2.3rc1 data model this object is explicitly represented by a single party_id.
Another good example of this is can be found in the user groups data model. The 3.x user groups data model contains another example of an implied identity. Every mapping between a user and a group could have an arbitrary number of attached values (user_group_member_fields, etc.). In this case it is the pair (group_id, user_id) that implicitly refers to an object (the person's membership in a group). In the 5.2.3rc1 data model this object identity is made explicit by adding an integer primary key to the table that maps users to groups.
Coming from a purely relational world, this might seem slightly weird at first. The pair (group_id, user_id) is sufficient to uniquely identify the object in question, so why have the redundant integer primary key? If you take a closer look, it actually isn't quite so redundant. If you want to be able to use the object model's permissioning features, and generic attribute features on a table, you need an integer primary key for that table. This is because you can't really write a data model in oracle that uses more than one way to represent identity.
So, this apparently redundant primary key has saved us the trouble of duplicating the entire generic storage system for the special case of the user_group_map, and has saved us from implementing ad-hoc security instead of just using acs-permissions. This design choice is further validated by the fact that services like journals that weren't previously thought to be generic can in fact be generically applied to membership objects, thereby allowing us to eliminated membership state auditing columns that weren't even capable of fully tracking the history of membership state.
The design choice of explicitly representing object identity with an integer primary key that is derived from a globally unique sequence is the key to eliminating redundant code and replacing it with generic object level services.